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Abstract. Spherical Hartree-Fock calculations with projection onto zero total linear momentum before
the variation are performed for the nuclei 4He, 12C, 16O, 28Si, 32S and 40Ca using a density-independent
effective nucleon-nucleon interaction. The results are compared to those of usual spherical Hartree-Fock
calculations subtracting the kinetic energy of the center-of-mass motion either before or after the variation
and to the results obtained analytically with oscillator occupations. Total energies, hole energies, elastic
charge form factors and charge densities and the mathematical Coulomb sum rules are discussed.

PACS. 21.60.-n Nuclear structure models and methods

1 Introduction

We consider the nucleus as a closed system of interact-
ing, non-relativistic nucleons. The homogenity of space
requires that the total linear momentum of this system is
conserved. Consequently, the Hamiltonian describing any
particular nucleus cannot depend on the center-of-mass
(COM) coordinate of its constituents, but (besides on spin
and isospin quantum numbers) only on relative coordi-
nates and momenta. The dependence on the total momen-
tum is trivial: it describes the free motion of the total sys-
tem and can always be transformed away by considering
the system in its COM rest frame. We have then to solve
the corresponding Schrödinger equation for the remaining
“internal” Hamiltonian. In principle, this can be achieved
by writing this Hamiltonian in Jacobi coordinates. How-
ever, nucleons are fermions and thus do obey the Pauli
principle. Since the Jacobi coordinates depend on all the
nucleon coordinates, thus an explicit antisymmetrization
of the wave functions is required as it is performed, e.g., in
few-body physics. Being already there sometimes rather
involved though still feasible, such an explicit antisym-
metrization becomes impossible in the many-body system
(e.g., the antisymmetrization of 20 like nucleons would
require 20 factorial different terms). Thus in the many-
body system the antisymmetrization usually is performed
implicitly by expanding the wave functions in terms of
Slater (or generalized Slater) determinants. In this way
the Pauli principle is automatically fulfilled. The Slater

a e-mail: karl.wilhelm.schmid@uni-tuebingen.de

determinants, however, depend on 3A instead of the al-
lowed 3A-3 coordinates and thus contain contaminations
due to the motion of the system as a whole, so-called “spu-
rious” admixtures. Galilei invariance is broken.

This defect of almost all microscopic nuclear-structure
models has been recognised [1] almost immediately after
the development of the shell model. It was shown later
in [2] that in case of pure-harmonic-oscillator configura-
tions one can get rid of this problem by diagonalizing the
(oscillator) COM Hamiltonian and projecting all states
not corresponding to the ground state of this operator out
of the spectrum of the many-nucleon Hamiltonian. This
procedure, however, requires the use of so-called complete
n�ω spaces (since only then COM and internal excitations
decouple exactly) and thus is of little help in most of the
usual approaches to the nuclear many-body problem. A
more general solution is the projection of the wave func-
tions into the COM rest frame [3], which ensures trans-
lational and, if performed before solving the correspond-
ing Schrödinger equation (usually by variational methods)
even full Galilei invariance [4]. The key idea of this pro-
jection is to superpose the wave function shifted all over
normal space with identical weights and thus to achieve
vanishing total linear momentum. Since the bound states
of a nucleus are localized, this procedure always does con-
verge (for scattering states a slightly different procedure
has to be used [5]). The projection method has the advan-
tage that it works in general model spaces as well as for
general (non-oscillator) wave functions.

Though in principle known since almost half a century,
only few practical calculations have been performed using
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this method. The reason for this is quite simple: the pro-
jection operator is an A-body integral operator with the
rather nasty property to link the usual model space states
to rather highly excited (and thus usually unoccupied)
ones as well as to the fully occupied ones, which are often
treated as an inert core. This is easy to understand: any
change of the linear momentum of the valence nucleons re-
quires a corresponding change of the linear momentum of
the core in order to ensure vanishing total linear momen-
tum for the system. Unlike the angular momentum, the
linear momentum is thus a true A-body correlation and
hence much more complicated to treat than the latter.

Because of these difficulties, instead of treating Galilei
invariance correctly, its breaking is usually neglected
adopting the well-known textbook argument that it in-
duces only 1/A effects and thus “can savely be neglected
for nuclei beyond oxygen” [4], provided the usual approxi-
mate corrections like subtracting the kinetic energy of the
COM motion from the original Hamiltonian or the use
of the so-called Tassie-Barker factor [6] in the analysis of
form factors are done.

That this, however, is not true has been shown by sev-
eral studies within the last decade. Hartree-Fock calcula-
tions with projection into the COM rest frame for 4He [7]
as well as the analysis of form factors and charge densities
of several spherical nuclei [8,9] have demonstrated that
the correct treatment of Galilei invariance yields consid-
erable effects far beyond the usually assumed 1/A level.
The same holds for scattering states as demonstrated in
ref. [10] for the inclusive quasi-elastic electron scattering
again from 4He. Recently now, a whole series of model
investigations [11–13,5] has been published, in which the
COM effects have been studied in a more systematic way.
Considerable effects have been seen for spectral functions
and spectroscopic factors, transition form factors and den-
sities, energies of hole states, Coulomb sum rules, response
functions and many more. These investigations, however,
have been undertaken with rather simple wave functions:
the ground states of the doubly even A-nucleon systems
4He, 16O and 40Ca have been described in the simple-
oscillator limit and for the ground and excited states of
the corresponding odd (A − 1)-nucleon systems simple
one-hole states have been used. This has the advantage
that all calculations can be performed analytically, but is
definitely not very realistic. So, e.g., the above-mentioned
pure-oscillator A-nucleon configurations are non-spurious
and thus the projection yields here no additional effect
with respect to the usual approach to subtract the kinetic
energy of the COM motion. It is hence desirable to study,
e.g., these ground states in more realistic approaches. This
will be done in this and a forthcoming paper.

For this purpose we have performed spherical Hartree-
Fock calculations with projection into the COM rest frame
before the variation for the six nuclei 4He, 12C, 16O, 28Si,
32S and 40Ca. The results have been compared with those
of normal spherical Hartree-Fock calculations subtracting
the kinetic energy of the COM motion either before or
after the variation and with the analytically obtained os-
cillator results out of ref. [13]. For each of the considered

nuclei up to 19 major oscillator shells have been used as
single-particle basis. As effective interaction, the simple
Brink-Boeker force B1 [14] has been taken. We are aware
of the fact that this interaction is not very realistic. How-
ever, the aim of the present investigation is not a compar-
ison with experiment but the study of the effects of a cor-
rect treatment of Galilei invariance. For this purpose, the
B1 interaction is as good as any other. Furthermore, con-
sisting out of Gaussians, it can be treated in the oscillator
limit analytically and thus allows for a direct comparison
with the results reported in ref. [13].

Section 2 of the present paper gives a short summary of
the spherical Hartree-Fock approach with projection into
the COM rest frame before the variation. Section 3 will
then describe some details of the calculations and present
the results for the total energies, the hole energies, the
elastic charge form factors and corresponding charge den-
sities and the Coulomb sum rules. Conclusions, three ap-
pendices with some detailed formulas and references con-
clude the present paper.

In the second of the present series of two papers we
shall then discuss the effects of the correct treatment of
Galilei invariance on the spectral functions and spectro-
scopic factors obtained with the wave functions out of the
present paper.

2 COM-projected Hartree-Fock

The essential mathematics for Hartree-Fock calculations
with projection into the COM rest frame before the vari-
ation has been presented in detail already in ref. [7] and
hence will be summerized only briefly in the following. We
start by defining our model space by Mb oscillator single-
particle states, the creators of which will be denoted by
{c†i ; i = 1, ...,Mb}. We shall furthermore assume that the
effective Hamiltonian appropriate for this model space is
known and can be written in the chosen representation as
a sum of only one- and two-body parts,

Ĥ =
∑
ir

t(ir)c†i cr +
∑
ikrs

v(ikrs)c†i c
†
kcscr, (1)

where t(ir) are the single-particle matrix elements of the
kinetic-energy operator and v(ikrs) the antisymmetrized
two-body matrix elements of the considered interaction.
We shall assume that this interaction is translational in-
variant, i.e., it does not depend on the center-of-mass co-
ordinate of the two nucleons. Density-dependent interac-
tions (in their usual form) do not fulfill this requirement.
Their treatment is much more complicated, as has been
described in detail in ref. [13]. Such interactions will not
be considered in the present paper.

In the Hartree-Fock approach one searches for the
optimal one-determinant representation of the A-nucleon
ground state having the form

|D〉 =

{
A∏

h=1

b†h

}
|0〉, (2)
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where

b†β =
Mb∑
i=1

D∗
iβc

†
i , (3)

and

bβ =
Mb∑
i=1

Diβci, (4)

respectively, with D being a unitary (Mb ×Mb) transfor-
mation. In eq. (2) we have assumed that the self-consistent
states created by the operators (3) are ordered according
to their energy so that β = 1, . . . A correspond to the
occupied “hole” states h, h′, . . . . The unoccupied orbits
β = A + 1, . . . ,Mb will be denoted as “particle” states
p, p′, . . . in the following.

Now, obviously, the determinant (2) is not translation-
ally invariant. In order to obtain a Galilei invariant wave
function we have to use instead of (2) the expression

|D ; 0〉 ≡ Ĉ(0)|D〉√
〈D|Ĉ(0)|D〉

(5)

as test wave function in the variation. Here

Ĉ(0) ≡
∫

d3 �a Ŝ(�a ) (6)

with
Ŝ(�a ) ≡ exp{i�a · P̂} (7)

projects into the COM rest frame by superposing all states
created by the shift operator (7) (here P̂ is the operator
of the total momentum of the considered system) with
identical weights.

The energy functional Epr to be used in the Hartree-
Fock approach with projection into the COM rest frame
before the variation can then be written as

Epr =
∫
da a2

∫
dΩa h(�a )∫

da a2
∫
dΩa n(�a )

, (8)

where we have introduced the shifted overlap function

n(�a ) ≡ 〈D|Ŝ(�a )|D〉 = detX(�a ), (9)

which can be represented as the determinant of an (A×A)-
matrix

Xhh′(�a ) ≡ 〈h|Ŝ(�a )|h′〉 =
∑
ik

DihSik(�a )D∗
kh′ (10)

with Sik(�a ) being the matrix representation of the shift
operator within the chosen harmonic-oscillator single-
particle basis. These matrix elements are given in ap-
pendix A. Furthermore, we use in (8) the shifted energy
function

h(�a ) ≡ 〈D|ĤŜ(�a )|D〉 = t(�a ) + v2(�a ). (11)

Here the one-body term is given by

t(�a ) = n(�a )
∑
ir

t(ir) ρ̃ri(�a ) (12)

with the shifted density matrix being defined as

ρ̃ri(�a ) ≡
∑
k

Srk(�a )
∑
hh′

D∗
kh [X−1(�a )]hh′ Dih′ , (13)

and for the two-body part of (11) one obtains

v2(�a ) = n(�a )
1
2

∑
ikrs

v(ikrs) ρ̃sk(�a ) ρ̃ri(�a ). (14)

The energy functional (8) has to be minimized with
respect to arbitrary variations of the underlying Hartree-
Fock transformationD. This transformation, however, has
to be unitary and thus not all of the (Mb × Mb)-matrix
elements of D are linear independent. Nevertheless, an
unconstrained minimization of the functional (8) can still
be performed, if one parametrizes the underlying Hartree-
Fock transformation D via Thouless’ theorem [15], which
states that any Hartree-Fock determinant |Dd〉 can be rep-
resented in terms of the creation and annihilation opera-
tors of some reference determinant |D0〉 via

|Dd〉 = c(d) exp



∑
p,h

dphb
†
p(D0)bh(D0)


 |D0〉, (15)

provided that the two determinants are non-orthogonal,
since

c(d) = 〈D0|Dd〉. (16)

The creation operators belonging to the Hartree-Fock de-
terminant |Dd〉 are then related to those of the reference
determinant |D0〉 via

b†h(Dd) =
∑
h′

[L−1]hh′


b†h′(D0) +

∑
p′

dp′h′b†p′(D0)



(17)

for the occupied and

b†p(Dd) =
∑
p′

[M−1]pp′

(
b†p′(D0) −

∑
h′

d∗p′h′b
†
h′(D0)

)

(18)
for the unoccupied states, respectively. They are given in
terms of the (Mb−A) ·A linear independent variables dph.
The (A×A)-matrix L in (17) is defined by the expression

1A + dT d∗ = LL†, (19)

while the ((Mb − A) × (Mb − A))-matrix M out of (18)
can be obtained by the solution of the equation

1Mb−A + d∗dT = MM†. (20)

The variational equations resulting from the minimization
of the functional (8) thus get finally the form

∂Epr

∂dph
=

[
M−1† G L−1

]
ph

≡ 0, (21)
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where the ((Mb −A)×A)-matrix G is defined as

Gph ≡
∫
da a2

∫
dΩa gph(�a )∫

da a2
∫
dΩa n(�a )

(22)

and the function gph(�a ) is given by

gph(�a ) ≡ 〈D| [Ĥ − Epr] Ŝ(�a ) b†p(D)bh(D) |D〉 =
Mb∑

i,r=1

A∑
h′=1

[X−1(�a )]hh′ Dih′

·
{
[ h(�a ) − Eprn(�a )] δir

+n(�a )
Mb∑
k=1

Γ̃ik(�a ) (1 − ρ̃(�a ))kr

}

·
Mb∑
s=1

Srs(�a ) D∗
sp , (23)

where

Γ̃ik(�a ) ≡ t(ik) +
∑
rs

v(irks) ρ̃sr(�a ). (24)

The “local” gradient vector (22), obviously, has to vanish
at the solution of (21), too. This solution can be obtained
using standard methods as they have been described, e.g.,
in ref. [16].

Up to now no symmetry restrictions have been im-
posed on the Hartree-Fock transformation (3), (4). Thus
the Hartree-Fock vacuum (2) breaks in general besides the
translational invariance also other symmetries like, e.g.,
the conservation of the total angular momentum and the
parity. For this general case therefore besides the momen-
tum projection also the projection on these other sym-
metries would be required. The situation becomes, how-
ever, much simpler, if only spherically symmetric Hartree-
Fock transformations are admitted. Then each of the self-
consistent states created by the operators (3) has the
isospin 3-projection, the orbital and total angular momen-
tum and the 3-projection of the latter as “good” quantum
numbers, and the sums in (3) and (4) run only over the
node quantum number. For nuclei with closed angular-
momentum subshells the corresponding Hartree-Fock vac-
uum (2) has then total angular momentum Iπ = 0+ and
conserves the proton as well as the neutron number. Con-
sequently, the projection on these symmetries becomes re-
dundant and we are left with only the linear-momentum
projection as described above.

Furthermore, for spherically symmetric systems, obvi-
ously neither the shifted overlap (9) nor the correspond-
ing energy function (11) do depend on the direction of the
shift vector �a. Thus, the angle integrations in (8) and (21)
induced by the operator (6) become trivial and only a sin-
gle integral over the radial component of the shift vector
remains to be done numerically. An explicit formulation
of this special case will not be given in the present pa-
per. However, it is obvious that the calculation of the ex-
pressions needed for the minimization of the energy func-
tional (8) is then simplified considerably.

3 Results and discussion

We have considered the six nuclei 4He, 12C, 16O, 28Si,
32S and 40Ca. As Hamiltonian, as in ref. [13], the Brink-
Boeker interaction B1 [14] complemented with a short-
range (0.5 Fm) two-body spin-orbit term having the same
volume integral as the corresponding zero-range term of
the Gogny force D1S [17], plus the Coulomb force and
the kinetic energy has been used. First, the energy of
the simple-oscillator determinants for these nuclei (e.g.,
(0s)4(0p)12 for 16O) has been minimized with respect to
the oscillator length parameter b. For the intermediate
states needed to compute the shifted energy function (11)
here four major shells more than in the basis have been
taken (e.g., in 16O the maximum N = 2n+ l of the oscilla-
tor determinant is 1. Hence, for the intermediate states all
orbits up to N = 5 have been used). The results obtained
were identical to those obtained analytically in ref. [13],
which is a good check of the convergence of the numerical
procedure.

In the next step then, for increasing size of the single-
particle basis up to N = 2n + l = 18, in each nucleus
and each basis system always three different Hartree-Fock
calculations have been performed:

First, a usual spherical Hartree-Fock calculation was
done, in which the energy

E′
n = 〈Dn|Ĥ|Dn〉 (25)

is minimized and after convergence corrected by subtract-
ing the expectation value of the kinetic energy of the
center-of-mass motion

En = E′
n −

〈
Dn

∣∣∣∣ P̂
2

2MA

∣∣∣∣Dn

〉
. (26)

This is the normal approach as indicated by the subscripts
“n” at the total energy and the wave function.

Second, a corrected spherical Hartree-Fock calculation
has been done, in which the expectation value of the in-
ternal Hamiltonian

Ec = 〈Dc|
(
Ĥ − P̂

2

2MA

)
|Dc〉 (27)

is minimized. The subscript “c” refers to this corrected
approach.

Third, a spherical Hartree-Fock calculation with pro-
jection into the center-of-mass rest frame before the vari-
ation as described in sect. 2 has been performed. In this
case the energy functional (8)

Epr =
〈Dpr|Ĥ Ĉ(0)|Dpr〉
〈Dpr|Ĉ(0)|Dpr〉

(28)

has been minimized. Here, for the intermediate states
again always four major shells more than for the basis
have been taken into account. Note, that |Dn〉, |Dc〉 and
|Dpr〉 result from different variational calculations and are
hence different.
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Fig. 1. In the left part the total binding energy of 4He as obtained with the Brink-Boeker force B1 [14] using an oscillator length
b = 1.41 Fm is plotted against the size of the basis. Three curves are shown: the open circles correspond to a normal spherical
Hartree-Fock calculation with the expectation value of P 2/2MA subtracted after convergence, the full triangles display the
results if this center-of-mass correction is included during the iteration, and, finally, the full circles give the result of a spherical
Hartree-Fock calculation with projection into the momentum rest frame before the variation (CMPSHF). Furthermore, the figure
displays the results of constrained calculations adding the oscillator center-of-mass Hamiltonian with a Lagrangian multiplier λ
to the internal Hamiltonian which “penalizes” COM excitations. The right part of the figure displays the hole energies obtained
in the oscillator limit HO (Nmax = 0) and in the Hartree-Fock approximation HF (with Nmax = 18) using the “normal” (no) as
well as the “projected” (pr) approach in both cases. Note that the normal approach includes the usual COM correction (see text).

Finally, for the largest-basis system (N = 18), we have
studied in each nucleus a widely used approximate de-
scription to deal with the center-of-mass motion: instead
of minimizing Ec out of eq. (27), one minimizes

E′
λ = 〈Dλ|

(
Ĥ − P̂

2

2MA

)
|Dλ〉 + λ

· 〈Dλ|
(

P̂
2

2MA
+

1
2
MAω2 �R

2

)
|Dλ〉 (29)

with a large Lagrangian multiplier λ, i.e., one penalizes
center-of-mass excitations. This prescription is exact for
so-called complete n�ω configuration spaces [2]; however,
it is often applied also in truncated shell model spaces [18,
19]. The internal energy (i.e., (29) without the penalizing
term) has been obtained for the three different λ values
10, 100 and 10000.

In addition, again always for the largest basis, the hole
energies obtained for the corrected approach

Eh
c = Ec − 〈Dc|b†h(Dc)

(
Ĥ − P̂

2

2M(A− 1)

)
bh(Dc)|Dc〉

(30)
have been compared with the projected results

Eh
pr = Epr − 〈Dpr|b†h(Dpr)ĤĈ(0)bh(Dpr)|Dpr〉

〈Dpr|b†h(Dpr)Ĉ(0)bh(Dpr)|Dpr〉
(31)

as well as the corresponding results for the simple-
oscillator occupations. For the nuclei, in which two
s-states are occupied (32S and 40Ca), obviously an ad-
ditional diagonalization has been performed.

Note, that the definition (30) differs from the usual ex-
pression since via the kinetic energy of the center-of-mass
motion the internal Hamiltonian becomes A-dependent.
The resulting difference with respect to the usual expres-
sion is for non-spurious oscillator hole states 3�ω/4(A−1)
and in the general case always larger than this lower limit.
Inserting the results for �ω into this formula, one obtains
considerable effects even for the larger A values considered
here.

The results for the total binding energies and the hole
energies of the considered nuclei are summerized in figs. 1
to 6. The left side of each figure presents the total binding
energy as a function of the size of the basis. Three different
curves are plotted: open circles refer to the Hartree-Fock
results (26) where the kinetic energy of the center-of-mass
motion is subtracted after the variation, full triangles give
the results of the corrected approach (27), in which this
subtraction is done before the variation and full circles dis-
play the results of the spherical Hartree-Fock calculations
with projection into the center-of-mass rest frame before
the variation (28).

For pure-oscillator occupations (i.e., the smallest ba-
sis) these three curves obviously coincide, for larger-
basis systems; however, they differ considerably, i.e., dis-
play rather different major-shell mixing. Let us first
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Fig. 2. Same as in fig. 1, but for the nucleus 12C with oscillator length b = 1.72 Fm.

Fig. 3. Same as in fig. 1, but for the nucleus 16O with oscillator length b = 1.79 Fm.

concentrate on the unprojected approaches (26) and (27).
As expected, the corrected approach (27) yields always a
lower binding energy than the normal one (26); however,
for all but one of the considered nuclei the corresponding
curves run almost parallel with increasing basis size and
their difference is rather small. The exception is the case
of 4He, where (26) even yields a decrease in binding en-
ergy with the basis size thus indicating that the underlying
wave functions have a rather different structure than those
obtained via (27). The energy gain of the projected ap-
proach (28) with respect to the corrected prescription (27)
is in all considered nuclei (except 4He) much larger than
that of the latter with respect to (26). For 40Ca in the
largest-basis system, e.g., the projected binding energy is

1.25 MeV lower than the corrected result, while the latter
is only 136 keV lower than the normal one. Note that these
1.25 MeV amount to almost 20 percent of the total major-
shell mixing obtained in the corrected approach (27).
Thus, obviously, the restoration of Galilean invariance
yields a considerable effect on the total binding energy and
should not be neglected even for nuclei as heavy as 40Ca.

Furthermore, as can be seen from the inverted trian-
gles in the figures, the prescription (29), which penalizes
center-of-mass excitations, fails completely. For the largest
Lagrange multiplier (λ = 10000) the procedure yields
in all considered nuclei just the simple-oscillator occupa-
tion. This, definitely, is a non-spurious state (i.e., contains
no center-of-mass excitations); however, the major-shell
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Fig. 4. Same as in fig. 1, but for the nucleus 28Si with oscillator length b = 1.85 Fm.

Fig. 5. Same as in fig. 1, but for the nucleus 32S with oscillator length b = 1.91 Fm.

mixing is completely supressed in this solution. This is a
severe warning to use the prescription (29) in incomplete
model spaces: it always prefers non-spurious (one valence
shell) solutions and is hence uncontrollable even if the con-
figuration space is less severely truncated as in the simple
Hartree-Fock approach discussed here.

On the right side of figs. 1 to 6 we display the proton
and neutron hole energies in the considered nuclei. Always
the corrected results (30) (indicated by the label no) are
compared with the projected energies (31) (indicated by
the label pr) for both the oscillator occupation (HO) as
well as the Hartree-Fock approach (HF) calculated in the
N = 18 basis.

Though the underlying wave functions (and total bind-
ing energies) are considerably different, in all considered
nuclei the harmonic-oscillator approach and the Hartree-
Fock method yield remarkably similar results. For the non-
spurious hole states out of the last occupied major shell
in the harmonic-oscillator approach the corrected and pro-
jected results have to be identical, as demonstrated ana-
lytically in ref. [13] and this feature holds to a large extent
for the Hartree-Fock results, too. For the hole states out
of the second and third but last occupied shell corrected
and projected results display in both approaches rather
similar pronounced differences. So, e.g., in 16O the pro-
jected p-holes are more than 6 MeV lower in energy than
the corresponding corrected results and even in 40Ca the
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Fig. 6. Same as in fig. 1, but for the nucleus 40Ca with oscillator length b = 1.97 Fm.

differences are still about 2.5 MeV for both the p- and the
lowest s-holes. It was demonstrated in ref. [13] that these
differences are consistent with the differences in the spec-
troscopic factors out of ref. [11]. This will be discussed in
more detail in the second of the present series of papers.

An interesting observation is made for the two nuclei
28Si and 32S. Here, the p1/2-holes are almost unaffected
by the projection, while the p3/2-holes show the same dif-
ferences as, e.g., observed in 40Ca. Since the coupling of
p1/2 and d5/2 to angular momentum one is not possible
and the d3/2-orbit is unoccupied in these two nuclei, this
observation points to the dominance of angular momen-
tum one couplings for the hole energies.

Figures 7 to 12 demonstrate the effects on the charge
form factors and corresponding charge densities. Usually,
the operator for the charge density in momentum repre-
sentation is written as [20,12]

ρ̂n ≡
∑
τ

fτ (Q2)
Nτ∑
i=1

exp{i�q · �ri}, (32)

where τ is the isospin projection (proton or neutron) and
the nucleon charge form factors fτ are given by

fτ (Q2) ≡ Gτ
E(Q

2) − Q2

8M2

Gτ
E(Q

2) + Q2

4M2 G
τ
M (Q2)

1 + Q2

4M2

(33)
with the Sachs form factors parametrized in the well-
known dipole form (see, e.g., [21])

Gp
E(Q

2) ≡
[
1 +

Q2

(843MeV)2

]−2

,

Gτ
M (Q2) ≡ µτ G

p
E(Q

2), with
{

µp = +2.793
µn = −1.913

}
,

Gn
E(Q

2) ≡ −µn Q2

4M2

1

1 + 5.6 Q2

4M2

Gp
E(Q

2). (34)

Here M is the nucleon mass and Q2 the negative square
of the 4-momentum transfer

Q2 ≡ (�c�q )2 − (∆E)2 (35)

with∆E being the energy transfer and �q the 3-momentum
transfer to the system. For elastic electron scatter-
ing the energy transfer is given by the recoil energy
(�c�q )2/(2AMc2) so that here

Q2 = (�c�q )2
{
1 − (�c�q )2

4A2M2c4

}
. (36)

If, as in our case, the ground state is described by a single
determinant |D〉, then the “normal” elastic charge form
factor has the form

F n
ch(Q

2) = 〈D|ρ̂n|D〉, (37)

and the corresponding charge density is just the Fourier
transform of this expression.

Obviously, to obtain a translational invariant form for
the charge density operator, (32) has to be complemented
with the so-called Gartenhaus-Schwartz operator as has
been demonstrated in ref. [12],

ρ̂inv ≡ ρ̂n exp{−i�q · �R}. (38)

The Galilei-invariant form of the charge form factor is thus

F pr
ch(Q

2) =
〈D|ρ̂invĈ(0)|D〉
〈D|Ĉ(0)|D〉 . (39)

The matrix elements needed to compute this expression
are given in appendix B. The corresponding charge den-
sity is then again obtained by Fourier-transforming this
expression.
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Fig. 7. In the left part of the figure the square of the charge form factor for 4He is displayed as a function of the 3-momentum
transfer. For the nucleon form factors the usual dipole parametrisation [21] has been used. Open inverted triangles correspond to
an oscillator occupation with no COM correction included (normal oscillator), full triangles give the oscillator result including
the Tassie-Barker factor [6] (projected oscillator), open circles display the form factor obtained with normal Hartree-Fock
(including the COM correction in the Hamiltonian during the variation) taking into account the dynamic correction (essentially
again the Tassie-Barker factor) out of the text. Finally, the full circles display the result of the projected calculation. The right
part of the figure gives the corresponding charge densities (obviously calculated for point nucleons).

Fig. 8. Same as in fig. 7, but for the nucleus 12C.

It has been demonstrated already some time ago [9]
that using the so-called Gaussian overlap approximation
for both the shift as well as for the Gartenhaus-Schwartz
operator (38) reduces to the “dynamically corrected”
charge form factor

F dy
ch (Q

2) = F n
ch(Q

2) exp

{
3
8

�q 2

〈D|P̂ 2|D〉

}
. (40)

In case that |D〉 is a non-spurious oscillator state, the
exponential factor in (40) gets the form exp{(�q b/2)2/A},
which is the famous Tassie-Barker correction [6].

On the left side of figs. 7 to 12 we compare for the con-
sidered nuclei the normal form factor (37) for the oscillator
occupation (inverted open triangles) with the correspond-
ing projected one (39) (full triangles), the dynamically
corrected one (40), resulting from the solution |Dc〉 of the
minimization of the Hartree-Fock energy functional (27),
and, finally, the Galilei-invariant one (38) computed from
the solution |Dpr〉 of the minimization of the projected
energy functional (28) (full circles). The corresponding
charge densities are given on the right side of the fig-
ures. All Hartree-Fock results have been obtained using
the largest basis with 19 major oscillator shells.
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Fig. 9. Same as in fig. 7, but for the nucleus 16O.

Fig. 10. Same as in fig. 7, but for the nucleus 28Si.

Let us first concentrate on the oscillator occupation.
In 4He a large difference between the normal and the pro-
jected oscillator form factors at high momentum transfer
and, consequently, for the charge density at small radii
is observed. Since we have here a non-spurious oscillator
state, this difference is entirely due to the Tassie-Barker
correction. This correction decreases with increasing mass
number and can in 40Ca almost be neglected. On the
other hand, the difference of the Hartree-Fock results with
respect to the oscillator ones increases with increasing
mass number due to the increasing major-shell mixing.
E.g., in 40Ca, Hartree-Fock and oscillator results look
rather different.

Though computed with rather different wave functions
the projected and dynamically corrected form factors and
charge densities display only rather small differences in all
the considered nuclei except 4He. This is somewhat sur-

prising since in ref. [8,9] larger effects of the projection
have been seen even for nuclei up to A = 40. However, be-
sides being limited to projection after the variation, these
calculations had been done with different effective inter-
actions than used in the present work. Thus the present
results do not indicate that for the elastic form factors and
charge densities the dynamical correction is good enough
and no projection is needed. Instead, a more careful study
using various effective interactions is required.

In addition to the form factors we have studied the
mathematical Coulomb sum rules, too. Details of its def-
inition can be found in ref. [12]. As usual we assumed
point nucleons, i.e., we set the nucleon form factors out
of eq. (33) to 1 for the proton and 0 for the neutron. Fur-
thermore, again as usual, we subtracted the square of the
elastic form factor and divided the result by the charge
number in order to obtain the so-called inelastic Coulomb
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Fig. 11. Same as in fig. 7, but for the nucleus 32S.

Fig. 12. Same as in fig. 7, but for the nucleus 40Ca.

sum rules. Without any center-of-mass correction these
have the form

Σinel, n(q) =
1
Z

{
〈Dn|ρ̂nρ̂n †|Dn〉 − (F n

ch(q))
2
}
, (41)

where the elastic form factor out of eq. (37) has to be
taken in the point proton limit. If we include the dynam-
ical correction for the elastic form factor we obtain the
result

Σinel, dy(q) =
1
Z

{
〈Dc|ρ̂nρ̂n †|Dc〉 −

(
F dy
ch (q)

)2
}
, (42)

with the point proton limit for expression (40), and, fi-
nally, the linear-momentum projected expression has the

form

Σinel, pr(q) =
1
Z

{
〈Dpr|ρ̂nρ̂n †Ĉ(0)|Dpr〉

〈Dpr|Ĉ(0)|Dpr〉
− (F pr

ch(q))
2

}
,

(43)
with the point proton limit of the form factor (39). Ex-
plicit forms for the matrix elements entering the expres-
sions (41)-(43) are for spherically symmetric determinants
|D〉 given in appendix C. Note that it is irrelevant whether
in the first term of these expression the normal (32) or the
invariant form (38) of the charge density operator is used,
since in these matrix elements the Gartenhaus-Schwartz
operator does drop out. As for the charge form factors and
densities, the normal (41) and projected (43) results for
the oscillator occupation have been compared with the dy-
namically corrected (42) and the projected (43) Hartree-
Fock results. For the computation of the latter obviously
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Fig. 13. The inelastic (mathematical) Coulomb sum rule as a function of the 3-momentum transfer. Compared are the results
of calculations using an oscillator occupation and an uncorrected elastic charge form factor (for point protons) with those using
the same occupation but including the Tassie-Barker factor for the elastic charge form factor, those of a normal Hartree-Fock
calculation including the dynamical correction for the elastic charge form factor and, finally, those of the projected CMPSHF
approach. The upper part of the figure gives the results for 4He, the lower part those for the nucleus 16O.

again the solutions |Dc〉 and |Dpr〉 of the corresponding
variational calculations have been taken.

The results for 4He and 16O are displayed in fig. 13.
Plotted are the inelastic sum rules as defined above as
functions of the 3-momentum transfer q. As expected from
the similarity of the dynamically corrected and the pro-
jected elastic Hartree-Fock form factors almost no differ-
ences between these two approaches are obtained for the
inelastic sum rules either. That the projected oscillator
results almost coincide with the Hartree-Fock results, too,
is a clear indication that the inelastic sum rule is rather
insensitive to the major-shell mixing. However, all these
results approach the limit of 1 considerably slower than
the normal-oscillator approach. This difference is entirely
due to the square of the elastic form factor in the above
expressions and demonstrates that a correct treatment of
the latter (either exact by projection or approximate by
the dynamical correction) is definitely required.

Since for the inelastic sum rules of the other considered
nuclei the same behaviour as demonstrated in fig. 13 is
obtained, we shall not discuss them here.

4 Conclusions

We have presented the total binding energies, hole ener-
gies, form factors and charge densities as they result from
spherical Hartree-Fock calculations with projection into
the center-of-mass rest frame before the variation for the
six nuclei 4He, 12C, 16O, 28Si, 32S and 40Ca and have com-
pared them to the standard Hartree-Fock results obtained
by subtracting the kinetic energy of the center-of-mass
motion either after or before the variation. Furthermore,

for the two nuclei 4He and 16O, we have discussed the
inelastic Coulomb sum rule resulting from these different
approaches. For comparison, in addition the results for
pure-oscillator occupations have been discussed.

For the total binding energies considerable effects of
the correct treatment of Galilei invariance are seen. In
all the considered nuclei the energy gains of the momen-
tum projected solutions with respect to the conventionally
corrected approach using just the internal Hamiltonian
(which contains already the usual 1/A effect) in the varia-
tion are a considerable portion of the gains due to major-
shell mixing and hence as important as the latter. It was
furthermore demonstrated that the often used approxi-
mate prescription to penalize center-of-mass excitations
by an additional term in the variation does not work at
all at least in the severely truncated configuration spaces
used here. There are strong indications that this prescrip-
tion does only work in complete n�ω spaces and is uncon-
trollable even if used in less severely truncated shell model
spaces.

For the hole energies essentially the same features as
in ref. [13] are observed. While the energies of the holes
out of the last occupied shell are almost unaffected, the
projected energies of the holes out of the second and third
but last shell are considerably different from their conven-
tionally corrected counterparts (which again include the
trivial 1/A effects).

For the elastic charge form factors and densities (ex-
cept for the lightest considered system) there are little dif-
ferences obtained between the projected and the dynam-
ically corrected approach though these two approaches
use rather different wave functions resulting from different
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variational calculations and the same holds for the inelas-
tic Coulomb sum rules. However, these results may be
changed, if a different (more realistic) effective interaction
is used, and hence have to be interpreted with some care.

In conclusion, it has been demonstrated that a correct
treatment of Galilei invariance in the nuclear many-body
problem is possible via projection methods and that its ef-
fects are not only important for simple-harmonic-oscillator
configurations as shown in refs. [11–13,5] but also for
more realistic wave functions. We shall show in the second
of these two papers that this holds also for the spectral
functions and spectroscopic factors. Thus, we think that
the (up to now mostly neglected) restoration of Galilei
invariance is unavoidable in future nuclear-structure cal-
culations, and, on the long run, should also be done in
more sophisticated approaches like the shell model [18],
the quantum Monte Carlo diagonalization method [19] or
the VAMPIR approach [22].

We are grateful that the present study has been supported
by the Deutsche Forschungsgemeinschaft via the contracts
FA26/1 and FA26/2.

Appendix A. Oscillator matrix elements of
the shift operator

The single-particle matrix elements Sik(�a ) (10) of the shift
operator (7) within oscillator single-particle states play
an essential role in the projected formalism presented in
sect. 2. They have been given already in ref. [7]. Using the
usual quantum numbers τ , n, l, j and m for the isospin
projection, the node number (starting from zero), the or-
bital angular momentum l, which is coupled with the spin
to the total angular momentum j and its 3-projection m,
we obtain

〈τ1n1l1j1m1|Ŝ(�a )|τ2n2l2j2m2〉 ≡ δτ1τ2 exp
{
−1
4
α2

}

·
∑
L

√
4π

2L+ 1
Y ∗
LΛ(Ωa)

1
2
[
1 + (−)l1+l2+L

]

· (−)[L+l2−l1]/2
√
(2j1 + 1)(2j2 + 1)(−)j1−1/2

· (j1j2L|1/2− 1/20)(−)j2−m2

· (j1j2L|m1 −m2Λ) ηn1l1n2l2
L (α) , (A.1)

where α = |�a |/b with b being the oscillator length and

ηn1l1n2l2
L (α) ≡ exp

{
+
1
4
α2

}
(−)n1+n2

∞∫
0

dκ e−κ2

·κ2 R̃n1l1(κ) jL(κα) R̃n2l2(κ) , (A.2)

where R̃nl(κ) are the (dimensionless) polynomial parts of
the usual spherical radial oscillator functions depending
on the dimensionless variable κ. An analytical form of the
expression (A.2) has been given in ref. [7] and will not be
repeated here.

In case that the shift vector can be put in the
z-direction as in the spherically symmetric systems con-
sidered here, then√

4π
2L+ 1

Y ∗
LΛ(ẑ) ≡ δΛ0 . (A.3)

Then, in eq. (A.1), obviously, m1 and m2 have to be equal
and the evaluation of the formulas in sect. 2 is simplified
considerably.

Appendix B. The projected charge form
factor

In this appendix we shall give the formulas needed to
evaluate the projected charge form factor out of eq. (39).
Again we assume that the determinant |D〉 is spherical
symmetric. This allows to fix the direction of the momen-
tum transfer to the z-axis. Furthermore, it can be shown
easily, that the dependence on the angle ϕa of the shift vec-
tor is trivial and can be integrated out analytically. Left
to be done is then a twofold integration over the length of
the shift vector and over the angle ϑa between the shift
vector and the z-axis (direction of the momentum trans-
fer). After some tedious but straightforward calculation
we obtain

F pr
ch(Q

2) =
4πb3

〈D|Ĉ(0)|D〉 exp
{
−A− 1

A

(
bq

2

)2
}

·
∞∫
0

dαα2 exp
{
−A

4
α2

} π/2∫
0

dϑa sinϑa ·

· 2Re
{[ ∏

τ=p,n

detzτ (bq, α, ϑ)
][∑

τ

fτ (Q2)

·
∑

h1,h2>0

(τ) {
yτh1h2

(bq, α, ϑ)zτ−1
h2h1

(bq, α, ϑ)

− yτh1h̄2
(bq, α, ϑ)zτ−1

h2h̄1
(bq, α, ϑ)

}]}
, (B.1)

where b is again the oscillator length, α = |�a |/b, and h̄
denotes the time-reversed partner of the hole state h. The
second sum in eq. (B.1) is restricted to positive values of
the 3-projections of the two-hole states. Furthermore, �q
denotes the 3-momentum transfer, while Q2 is the (neg-
ative) square of the 4-momentum transfer as in sect. 2.
The nucleon form factors fτ (Q2) are given by eq. (33).
Furthermore

zτ12(bq, α, ϑ) ≡
∑
L

√
(2j1 + 1)(2j2 + 1)(−)j2−m2

· (j1j2L|m1 −m2Λ) (−)j1−1/2(j1j2L|1/2− 1/20)

·
{ √

2L+ 1
(l1l2L|000)

1
2
[
1 + (−)l1+l2+L

]− √
2L+ 1

(l1l2L|1− 10)
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· 1
2
[
1− (−)l1+l2+L

] L(L+ 1)− κ12(κ12 + 1)
2
√
l1(l1 + 1)l2(l2 + 1)

}

·
∑
L1L2l

(LL2L1|Λ− Λ0)dL2
Λ0(ϑa) i

L1 (−)[l+l2−L2]/2

·
∑
n

(−)n1+nηn1l1nl
L1

(qb/A)ηnln2l2
L2

(α) ·

·
√

(2L1 + 1)(2L2 + 1)
2l2 + 1

(l1L1l|000)

·
{
(l1Ll2|000)(l1L1l|000)(LL1L2|000)

+2
min(l1,L,L1)∑

λ=1

(−)λ(l1Ll2|λ− λ0)

· (l1L1l|λ− λ0)(LL1L2|λ− λ0)
}
, (B.2)

where the η’s are given by expression (A.2) and

κ12 ≡ (l1 − j1)(2j1 + 1) + (l2 − j2)(2j2 + 1). (B.3)

The matrix elements of yτ12 have exactly the same form
as (B.2) except that the imaginary unit i has to be re-
placed by −i and the argument in the first η has to be mul-
tiplied by a factor (A− 1). Note that the expression (B.2)
includes both natural- and unnatural-parity terms in the
sum over L. The latter had been neglected in ref. [9].

Appendix C. The mathematical Coulomb
sum rule

In this appendix we give the explicit formulas for the ma-
trix elements entering expressions (41)-(43) for the inelas-
tic Coulomb sum rules. In the normal approach one ob-
tains for spherically symmetric Hartree-Fock transforma-
tions

Σnor
0 (q) ≡ 〈D|ρ̂nρ̂†n|D〉 = Z + exp

{
−1
2
(bq)2

}

·
{[ ∑

αhlhjh

(p)
(2jh + 1)χαhlh;αhlh

0 (qb)
]2

−
∑

αhlhjh

(p) ∑
αh′ lh′ jh′

(p) ∑
L

1
2

[
1 + (−)lh+lh′+L

]

·∆(lh, lh′ , L)(jhjh′L|1/2− 1/20)2

· (2jh + 1)(2jh′ + 1)
(
χ
αhlh;αh′ lh′
L (qb)

)2
}
, (C.1)

where ∆(lh, lh′ , L) = 1 if | lh− lh′ | ≤ L ≤ lh+ lh′ and = 0
else,

χ
αhlh;αh′ lh′
L (qb) ≡

∑
n

(lhjh)∑
n′

(lh′jh′ )
Dp lhjh

nαh

· (−)n+n′
η
nlhn

′lh′
L (qb)Dp lh′ jh′

n′αh′ , (C.2)

and the η’s are given by the expression (A.2).
In order to evaluate the corresponding Galilei-invariant

expression for spherically symmetric determinants |D〉 the
shift vector can again be put in the z-direction. We obtain

Σproj
0 (q) ≡ 〈D|ρ̂nρ̂†nĈ(0)|D〉

〈D|Ĉ(0)|D〉 = Z + exp
{
−1
2
(bq)2

}

· 〈D|Ĉ(0)|D〉−1
4πb3

∞∫
0

dαα2〈D|Ŝ(êz · �a )|D〉·

·
{∑

L

1
2L+ 1

(∑
AC

(p)
ML

AC(qb) ρ̃
L
CA(α)

)2

−
∑

ABCD

(p) ∑
L

(∑
I

(−)I−L+1

{
jA jC L
jB jD I

}

·M I
AD(qb)M

I
BC(qb)

)
ρ̃LCA(α)ρ̃

L
DB(α)

}
, (C.3)

where A, B, . . . denote the quantum numbers of the os-
cillator single-particle basis states nAlAjA, nBlBjB , . . . ,
�α = �a/b with b being the oscillator length parameter,
and

ML
AC(qb) ≡ 1

2
[
1 + (−)lA+lC+L

]
∆(lA, lC , L)

·
√
(2jA + 1)(2jC + 1)(−)jA−1/2(jAjCL|1/2−1/20)

· (−)nA+nC ηnAlAnC lC
L (qb) (C.4)

are the reduced oscillator single-particle matrix elements
of the normal charge density operator in momentum rep-
resentation. The supersript (p) at the sum symbols means
that only proton orbits are considered. Finally,

ρ̃LCA(α) ≡
∑
m

(−)jC−m(jAjCL|m−m0) ρ̃(m)
CA (α), (C.5)

where

ρ̃
(m)
CA (α) ≡

∑
HH′

(p)
S

(pm)
CH (α)S(pm)

HH′
−1

(α)

·D(p lAjA)
nAαH′ δlH′ lAδjH′ jA

. (C.6)

In eq. (C.6) use has been made of the fact that the single-
particle matrix elements do not mix different isospin pro-
jections, and, for the shift vector in z-direction, do not mix
states with different total-angular-momentum projections
m either. This is indicated by the superscipts (pm).
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